xyz_data¶
Basic utilities for working with the xyz file format
-
class
auvlib.data_tools.xyz_data.
cloud
¶ Class for xyz point cloud type
-
static
from_matrix
(arg0: numpy.ndarray[float64[m, n]]) → List[numpy.ndarray[float64[3, 1]]]¶ Create Points from an Nx3 matrix
-
static
from_pings
(arg0: List[auvlib.data_tools.std_data.mbes_ping]) → List[List[numpy.ndarray[float64[3, 1]]]]¶ Create vector of xyz_data::Points from std_data::mbes_ping::PingsT by splitting at first_in_file_==True
-
static
parse_file
(arg0: unicode) → List[numpy.ndarray[float64[3, 1]]]¶ Parse xyz_data::Points from .xyz file
-
static
parse_folder
(arg0: unicode) → List[numpy.ndarray[float64[3, 1]]]¶ Parse xyz_data::Points from folder of .xyz files
-
static
read_data
(arg0: unicode) → List[numpy.ndarray[float64[3, 1]]]¶ Read xyz_data::Points from .cereal file
-
static
to_matrix
(arg0: List[numpy.ndarray[float64[3, 1]]]) → numpy.ndarray[float64[m, n]]¶ Create an Nx3 matrix from the list of points
-
static
-
auvlib.data_tools.xyz_data.
subsample_points
(arg0: List[numpy.ndarray[float64[3, 1]]], arg1: int) → List[numpy.ndarray[float64[3, 1]]]¶ Subsample by skipping N points at a time
-
auvlib.data_tools.xyz_data.
transform_points
(arg0: numpy.ndarray[float64[4, 4]], arg1: List[numpy.ndarray[float64[3, 1]]]) → List[numpy.ndarray[float64[3, 1]]]¶ Transform using 4x4 transformation matrix T
-
auvlib.data_tools.xyz_data.
write_data
(arg0: List[numpy.ndarray[float64[3, 1]]], arg1: unicode) → None¶ Write array of Vector3d to .cereal file